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SUMMARY 

In the present paper a numerical algorithm is given for solving a standard problem in fluid dynamics, that 
of inviscid, irrotational, incompressible flow over an arbitrary symmetric profile. The purpose of the paper 
is to  propose an alternative approach to solve certain fluid dynamic flows. This paper may be thought of 
as the first of a possible series of papers solving new and fundamental problems. In a sense, this new 
approach asks the question: what is the simplest and most eficient method of solving the problem considered 
by finite difference methods. It is believed that the following algorithm answers this question. Standard 
second-order finite difference techniques, such as SLOR and ADI, are used to  solve numerically a mixed 
boundary value problem comprised of a pair of elliptic partial differential equations with constant coefficients. 

KEY WORDS Numerical Solution Potential Flow 

INTRODUCTION 

A new field of research proposes an alternative method of solution to a class of fluid dynamic 
problems. The new approach uses as independent variables the streamlines I) = constant, of the 
flow under consideration and an arbitrary family of curves = constant. This approach is made 
possible by transforming the governing fluid flow equations from plane to curvilinear co-ordinates 
(+,I)), as accomplished by Martin.’ The new system of partial differential equations is made 
determined; boundary conditions are then applied and the equations are solved on a square 
rectangular grid (Figure I), composed of streamlines and, in the orthogonal case, potential curves. 
The boundary conditions are determined based on a priori knowledge of the location and 
direction of flow on specific streamlines, i.e. stagnation streamlines. The strength of the approach 
is the use of metrics: g1 g12, g22,  in the notation of differential geometry, as dependent variables. 
This provides for usually reliable results, provided that the grid size is chosen to be a ‘good’ 
size compared with the size of the profile being considered. The characteristic of goodness is, 
however, a difficult criterion to judge. If nothing else, this paper shows the weakness of 
second-order finite difference methods with regard to accuracy, and points out the need to use 
higher-order methods for such problems. However, accuracy is not the overall goal of this paper, 
but rather it is to present a different approach and show possibilities. 
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Figure I .  Computational grid 

The objective of the present paper is the same as that of the streamline analysis or flux analysis 
method developed by Uchida,' based on the stream curvature method of Fliigel.3 Uchida's method 
begins with an orthogonal curvilinear co-ordinate system (cx, b), independent of the flow variables, 
then approximates {j =constant near the curves of solution by a recursive relation from the 
continuity equation 

1. 2 (!?-'-!%)+-- ?$m- 1 w h,Pm dz h , p m - ,  da 

in which h,  and h, correspond to the metrices JgqI and J g Z z ,  respectively. The above equation is 
an ordinary differential equation. Uchida used this method to solve for compressible, irrotational 
flow in a circular channel. Such a problem can be attempted by Martin's approach by 
reformulating the Navier-Stokes equations with variable density. 

To begin with, consider the steady, plane, flow of a viscous, incompressible fluid over an arbitrary 
profile, y = f'(x) inserted at the origin. It is essential to construct a computational grid upon which 
the system of flow equations is discretized and solved, i.e. put into finite difference form. To avoid 
non-uniform grid spacing near the boundaries it is practical to construct numerically or 
algebraically a body conforming grid; this facilitates application of boundary conditions. The 
computational plane becomes a rectangular grid with uniform grid spacing in all directions. To 
generate a grid, one can solve elliptic partial differential equations (PDEs) such as4 

and similarily for y . P ( ~ , q )  is a control function prescribed or determined in the course of 
calculations to control grid spacing in various regions. A significant feature of (1) is its 
independence from the fluid flow equations. In the present method, many of the fundamental 
concepts of numerical grid generation are preserved and its techniques used extensively, i.e. 
solution of an elliptic PDE and construction of a computational grid with uniform grid spacing in 
both co-ordinate directions. However, as stated, there are several differences in this new approach: 
one being that the solution obtained is in terms of the metrices g1 922, g I 2  ofthe first fundamental 
form of differential geometry 

(2) 91 1 = x; + Y; .  Y 1 2  = X,hX, + Y,bY,, 9 2 2  = x; + Y;,  
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where g 2  = (911g22 - gt2 )  is the Jacobian of the transformation. A second difference is the use of 
Gauss's equation for vanishing plane curvature: 

in which r:j denote Christoffel symbols, and 

Gauss's equation ensures uniqueness of the solution to within an arbitrary constant, since gij are 
coefficients of the first fundamental form, 

d x 2 + d y 2 = g 1 1 d 4 2 + 2 y 1 2 d $ d $ + g 2 2 d $ 2 ,  ( 5 )  

if and only if they satisfy (3) for a curvilinear co-ordinate pair 4, $. Finally, a third difference is the 
absence of the forcing term in the present approach. This may constitute a disadvantage since other 
means, such as change of variable, must be employed to pack grid lines in regions of high gradient 
or where singularities exist, such as stagnation points. In the following sections, a finite difference 
technique is outlined that is general enough to solve for potential flows over arbitrary symmetric 
profiles without circulation. Flows with circulation, including those over an arbitrarily shaped 
profile at any angle of attack, can be attempted without a great deal of difficulty. This latter 
research area comprises a work in progress. 

MARTIN'S FLOW EQUATIONS 

The system of equations governing the steady, plane flow of a viscous, incompressible fluid is given 
by 

( P I X  + (P), = 0, ( 6 4  

(6b) 

(64 

d u u ,  + uu,J + P x  = P ( 4 . X  + UyJ,  

P ( U 4  + uv,) + P y  = A U X X  + "J 
in which p is the constant coefficient of viscosity and p the constant density. u, v and p are the 
components of velocity in the x and y directions and the pressure, respectively, all functions of x 
and y. By inspection (6) constitutes a system of three equations in three unknowns. By introducing 
the energy equation and vorticity equation, 

P 
2 

h = - ( U 2 + v 2 ) + p ,  o = u ~ - u ~ ,  

respectively, the system of equations (6) can be written,' as a non-dimensional system of four 
equations in four unknowns u, v, h and w :  

h, + o u  = (Re)- 'w,,  

w = v, - uy ,  
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where Re = p U ,  L / p  is the Reynolds number. Introducing a stream function $(x, y), we have $x = 
- v, $, = u. Furthermore, let 4(x, y) be a co-ordinate such that $, 4 form a curvilinear net. Denote 
by CI the angle of inclination of the curve $(x,y)=constant to the x-axis. Then we have the 
following standard results of differential geometry? 

x4= Jgiicosa,  Y,= Jg i i s ina ,  (84  

x, = Jg22 cos (a + e), y, = Jg22 sin(a + 6) .  (8b) 
In (8) 8 = 8(4, $) is a function of position, the measure of the angle of intersection of the co-ordinate 
curves $ = constant, 4 = constant. The integrability conditions, x,# = xbJI and y,$ = y+$, yield 

--rll, 9 2  aJI=-r12. 9 2  
$-911 91 1 

(9) 

Likewise, integrability conditions for CI yield (3), Gauss’s equation. By introducing hodograph co- 
ordinates (4, d), such that 

u = qcos 6,  u = qsind 

and using the equation of continuity, Martin’ has shown the equivalence of the continuity 
equation to 

q=-. JSll  ( 104  
9 

Subsequently, the flow equations (7) have been transformed by Martin to the following system of 
five equations, including continuity, in seven unknowns g1 1,  g12, gZ2, q, h, p and o: 

g22h4 - 912@JI + 0) = - d R e ) -  l q h L ,  (lob) 

-g12h4-gl l (hJI +o) =g(Re)-’w4 (Navier-Stokes), ( 10c) 

o = ’[ ( Y ) ~  - (”> ] (vorticity). 
9 9 ,  

The energy equation can be written by (10a) as 

The addition of Gauss’s equations and dropping of (10e) leaves a system of five equations in six 
unknowns. This requires some specification of the curves 4 = constant so as to make the system 
determined. Then a numerical solution may be attempted. 

BOUNDARY CONDITIONS 

To remove a degree of arbitrariness in equations (10) one can choose a representation, such as 

( 1 W  

x 2 g l  = g22, g12 = X g ,  cos 9, g = X g ,  sin 9. (1lb) 

dx2 + dy2 = gll(4,$)(d4’ + 2 X c 0 ~ 8 d $ d $  + X’d$’), 

Usually, 8 is chosen a priori, depending on the boundary conditions and hand. For constant 
X ,  8 = n/2, (1 1) is a conformal representation and the flow is necessarily irrotational by inspection 
of (IOd). This is the type of flow we are concerned with in the present paper. 

Conversely, if the flow is irrotational with constant 9, then inspection of (10d) with (1 1) yields 
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91 1 = 922z(4), 44) > 0, (12) 
where z is an arbitrary function of 4. Since the flow is assumed uniform in upstream and 
downstream regions, it follows from (10a) that z = constant. 

Taking z ( 4 )  = X x - 2  = constant in (12), and 8 = constant, and using this in (3) yields 

Likewise, by using (8) one can easily show that 

v; [XI - ~ C O S ~  [XI,, = 0, v; [ Y l -  2cose [YI,, = 0. 

For simplicity the upstream and downstream flows are considered to be described by linear 
functions of and 4 with constant A ,  B, C and D: 

x, (4, *I = A 4  + B+> Y, (4, *I = c4 + D*. (15) 

From (1 1) and (1 5) we find 

A B  + C D  A 2  + C2 
AD - C B  

Thus, to describe the problem in the upstream and downstream regions one only has to specify the 
constants in (16) with non-vanishing denominators. Figure 2 illustrates the possible flow patterns 
for a symmetrical profile. It is clear that g1 and g 2 2  are unknown on the profile; thus one approach 

Figure 2. Physical plane 
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is to incorporate von Neumann boundary conditions on the profile and on the vanishing 
streamline in the symmetric case. For unknowns x and y these boundary conditions would come 
from equations (8), whereas boundary conditions for In (y ) = 2 T, say, are derived from (9) to 
yield, with use of (1 lb) 

( 1  7 4  

(17b) 

a+ = Td, cot 8 - X-'T*cosec 8,  

= X'T,  cosec 8 - TJ, cot 8. 

The angle of inclination, a, of the velocity vector which is tangential to the profile for such flows is 
present in (17). sl also satisfies an elliptic equation of the form (14); however, its values are only 
required on the profile surface. Given an aerofoil profile y =f(x) it follows that 

- _  dy - taiia(x, y(x)) = j lx ) .  
dx 

Moreover, the flow tangency condition on the aerofoil surface is equivalent to 

d*-a$ a* 
- + tann(x, y(x)) = 0. 

dx C?X (-y 

By exploiting inverse relations between the co-ordinate pairs (x, y) and (4, I)) given by 

4 x  = Y*/% $x = - Y,/Y, 4, = - x,/cl, *.v =.%,,Is, 
one can show that the relations (9) are equivalent to 

dY tang = y,/x, = -. 
dx 

Thus, use of (18) is consistent with (9). By inspection of (18) it follows that values of x(4,$) are 
required on the profile. The flow tangency condition is satisfied, so that on the profile $ = constant 
may be assumed. Generally, an orthogonal grid is desirable for numerical computations, and the 
simplest possible boundary conditions are 

x z ( 4 > $ ) = 4 >  Y % ( 4 > $ ) = $ 2  (20) 
for both upstream and downstream conditions. This yields X = 1 and cot0 = 0 in (16). However, a 
suitable scale factor may be used in (20) with respect to y, in order to accelerate convergence, i.e. 
~ ~ ( 4 ,  $) = D$, D = constant. Use of(20) is suitable for the symmetric case. For the non-symmetric 
case it would desirable to have a non-zero incoming flow angle. From (19c) 

NUMERICAL ALGORITHM 

We consider only the symmetric problem. After some numerical experimentation it was found that 
the following algorithm yielded satisfactory results with a minimum of numerical experimentation: 

1.  Construct a computational domain (Figure 1 )  with grid points represented by ordered 
integer pairs (i,j) such that 

jmin d j d j,,,, imin d i < i,,,. 
The computational domain is defined for our purposes as 
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(45 $) E [$,in, 4 m a x I  x LO, $,,XI. 

The grid size is taken to be j,,, -jmin x i,,, - imin. The step sizes in the $ and 4 directions are 
given by 

4 m a x  - 4 m i n  
2 D 4 = .  $,ax - $min D $ =  . 

Jmax - jmin  1max - ',in 

2. Choose constants A,  B, C, D in ( 1  5), (16). These boundary conditions also determine T,, q m  
since from (10a) 

q m  = (%) = ( A 2  + C2))". ' / (AD - BC). 
cc 

and since T = (In g1 1)/2, T ,  = [ln ( A 2  + C2)]/2. 

3. Apply central differencing to (13) and to (14) for the equation involving x to obtain 

(Ti, j +  1 - 2 Ti, j + Ti, j-  1 + x 2  ( Ti + 1, j - 2 Ti,j + Ti - 1, j)/D$2 

=2xcos8(7; .+l , j+1 - T-l , j+l  - Ti-l,j+l + Ti-l,j-l)/(2D$D$). (21) 

A similar equation exists for x. Boundary conditions in the $ direction can be incorporated 
into (21) by the following equation (imin = 1): 

2 
(T@@)i,l = T C T i , 2 - ~ i , l - D $ ( T @ ) i , ~ I  + o ( D $ ~ )  (224 

D* 
where, from (1 7a), 

( T*)i, 1 = Ccose(Ti+ 1, j - T -  l , j ) / (2D4) - sine ( M i +  1, j  - Ui- 1. j)/(2D4)1. (22b) 

For x we have a similar pair of equations: 

(234 
2 

D* 
(x*t,,)i, 1 = ~ C x i ,  2 - Xi, 1 - D$(x$)~, 11 + o(D$~) ,  

in which X and 8 are determined from (1 6) and CI from 

tan- tf'(xi, 1 )I 3 I xi, 1 I < xLE = xTE 9 

0, otherwise. ai,l = 

4. Use SLOR or AD1 to solve iteratively for x and T as given in (22) and (23). This is done by 
using straightforward Gaussian elimination for tridiagonal matrices of the form 

Trid( - 1,2 + p, - 1) Ti = rhs, i = imin + 1,. . . , i,,, - 1; 

similarily for j except tha t j  begins at j m i n .  In the above expression p = 2 in the case of SLOR 
and p > 0 for ADI. An acceleration parameter ,fl is used in SLOR such that, at the kth 
iteration level, 

Tf,; c Tf, + P(OLD Tf, - T f ,  j), 

where ,fl = 1 for AD1 and j3 2 1 for SLOR. 
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RESULTS 

The test case was the semicircle of radius 1/2. This size of circle was chosen because of 
computational efficiency. The stream function and velocity potential in non-dimensional variables 
are given by 

** = ( r *  - L) sin e*, 
r* 

+* = ( r *  + q c o s 0 * ,  r 

where 
4* = 4/ (pVma) ,  $* = $/(pVpa), %* = 8, r* = r/a.  

In (25) a is the circle radius, p the density and Y" 
case profile was given by 

the upstream and downstream speed. The test 

Y(X) = (0.25 - x'), xLE d x d xTE, (26) 
also, from (24)-(25) 

The radial and angular components of velocity are given by (taking Y"= = p  = 1) 

* r =  - 

From (28) the speed on the circle is given by 

q(a, 0) = 2 sine. 

By inspection of (27), (29) using c ( ( 4 , O )  = 0 - n/2, we have 

q(4,O) = 2 cos (c((4,0)), 4 = - 2a sin (a(@, 0)). 

Taking an orthogonal grid (8 = n/2) in (lOa), and using (12) yields 

d4? 0) = l / C . X J Y l  1(4? 011. 
Solving (30) and (31) for y1 gives 

1 
91 1(47 0) = 4x2(1  - 42/4a2)' 141 < 2 4  

on the aerofoil surface, with 4 given by (30). An expression for gll(4,0) can also be determined 
for 141 > 2a, i.e. on the stagnation streamline but away from the surface. This can be determined 
from inverse relations between x, y and r,  0 given by 

From (27) and (33), using the chain rule for derivatives 

r4 
y ,  ](@, $) = r$ + v202 - 

"' - r4 - 2r2 a2 cos 20 + n4 (34) 

I t  can also be shown that y1 I = y22 and .X = 1. Using 8 = 0, n in (34) we have 
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‘To determine r as function of 4 set 8 = 0, 7c in (27) to obtain a quadratic in r: 

r2 4 r  + a2 = 0. (36) 

(37) 

in which the positive sign is taken if 4 > 2a and the negative sign taken if 4 < -2a. 
Equations (35) and (37) yield g l l  off the surface of the aerofoil: 

Solving (36) yields 

T = f 0.5[ 4 + J(42 - 4a2)], 

in which r is given by (37). The metric g1 given in (32), (38) can be used as a standard with which to 
compare the numerical solution. On the stagnation streamline .ql is determined from the 
numerical solution rather than (37) in the comparison because an accurate relation between x and 
4 is difficult to determine. A grid size of 101 x 66 was taken with xmaX = - xmin = 2, y,,, = 4.5033 
and ymin = 0. CPU time was 10-40 minutes on a Cyber 835 depending on the value of the ratio of 
the grid size D$/D4. Convergence is fastest, it is found, when the ratio of grid sizes is roughly J3, 
and using ADI. Figures 3 and 4 show metric and speed profiles plotted at values of x. Agreement is 
first-order accurate over the profile and more exaggerated when the metric is inverted. To achieve a 
more accurate solution would require not necessarily a larger grid but a higher order method. In 
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I 

choosing a larger grid it is found best to choose a value for i,,, and then choose a value forjmax 
which is small. By subsequently increasingj,,, by small amounts the best possible solution is 
obtained. Refining the grid was attempted with a transformation of the type 

4 = A exp( - B t 2 )  tan (, 
I) = C tanq, 

for constants A, B and C; however this proved cumbersome and ineffective since 9 varies with each 
iteration near the leading and trailing edge. This would be more effective if 4 were known in terms 
of x to begin with. Another approach would be to use staggered grid spacing. 

In summary, this original idea,’ based on a philosophy of M. H. Martin‘ has produced 
promising results. This work comprises a portion of G. Grossman’s Ph. D. dissertation.8 I t  is 
expected that more complicated flow problems can be solved, including those with viscous, 
rotational and compressible effects. 
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